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The probability of the decay of the metastable state has been found as a 
function of viscosity and temperature. At low temperatures, a classical over- 
barrier transition changes to the quantum tunneling. At low viscosity in classical 
and transitive semiquantum region of temperatures a depopulation of the dis- 
tribution function is significant. The distribution function is shown to satisfy the 
integral kinetic equation, the kernel of which equals the transition probability. 
The probability of transitions, induced by the red noise, with the frequency 
comparable to the transition frequency, is found. 

KEY W O R D S :  Quantum noises; decay probability; crossover region; 
depopulation of the distribution function. 

1. I N T R O D U C T I O N  

Past years have witnessed a renewed interest in the study of the quantum 
particle of motion, interacting with a heat bath. That was mainly 
stimulated by studies of superconducting tunnel junctions at low tem- 
peratures. For junctions of small size the lifetime of the metastable current 
state is not large and can be measured experimentally. At the given poten- 
tial barrier the lifetime of metastable state depends on temperature and 
viscosity. At high temperatures the decay proceeds via a classical over- 
barrier transition. At low temperatures, the quantum tunneling is essential. 
At zero temperature the tunneling occurs from the ground state. As the 
temperature rises, the tunneling from higher and still higher energy levels 
becomes the most probable one. As one passes to the classical overbarrier 
transition, either first- or the second-order phase transition takes place. The 
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phase transition order depends on the shape of the potential barrier. The 
phase transition is of the first order for potentials with a flat top (close to a 
rectangular barrier). In this case the quantum tunneling proceeds from 
deep levels at all temperatures, as far as it is significant. The total 
probability of a decay for such a potential is a sum of probabilities of the 
quantum tunneling and probability of the classical overbarrier transition. 
Depending on temperature, one or another mechanism is predominant. In 
many cases, in the vicinity of the lability point, the potential has a form of 
cubic parabola. For a cubic parabolic potential, as well as for one describ- 
ing the tunnel contact, the second-order transition takes place. In this case, 
as temperature rises, the tunneling transition would take place from the 
higher and still higher energy level, which reaches the height of the poten- 
tial barrier at the transition temperature To. For sufficiently high potential 
barrier, the decay rate F is exponentially small: 

F = B e x p ( - A )  (1) 

The exponents A and the preexponential factor B depend on temperature 
and viscosity, and one can distinguish in the plane (T, t/) several domains, 
corresponding to different regimes (Fig. 1): 

At temperatures T> T o, the Arrenius law holds: 

A = U/T (2) 
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Fig. 1. The regions on (q, T) plane with different dependence of the exponent and the prefac- 
tor. 
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where U is the potential barrier height. At T =  To the function A(T) has a 
discontinuous second derivative/l) At T <  To the exponent A(T) is a 
smooth function of temperature and tends to the constant limiting value at 
T ~ 0. For  example, in the limit of high viscosity and the cubic parabolic 
potential,(~) 

1 
(3) 

In the narrow region near To with width ~'o(To/U) 1/2 fluctuations 
smear the singularity out. In this region 

F(t) = 0 .5~[  1 - ~b(x)] exp(x 2 - U/T) (4) 

~b(x) = 2/n 1/2 ;o dt exp( - t 2) 

where x = 2 ( T - T o ) .  Coefficients ,i,, ~ and temperature T o depend on 
viscosity and were found in Refs. 2, 3, and 4. The decay probability has as 
a function of viscosity two characteristic points 17~,2 : 

rl ~ =mOT~U, rh = mf2 (5) 

where s is the frequency of oscillations in the overturned potential 

f2 = ( -  U"/m) 1/2 (6) 

m is particle mass and U" the second derivative in the maximum position. 
At viscosities r/~t/l the energy loss 6 per period is of the temperature 

order T. At t/ ~ th, the energy loss c~ ~ U and classical motion becomes an 
aperiodical one. In the classical region of high temperatures T~To 
preexponential factor found in Kramers'  work (5) in the limiting cases of 
r/,>t/1 and t/,~r/I and by Melnikov (6) at t/~t/1. 

The region of intermediate temperatures T ~ To where a transition 
from the classical to the quantum decay law (a) takes place, has been 
studied in Ref. 2 at t/1,~q~q2 and in Ref. 7 at t/ ~ t h .  In the present work 
we study the region of viscosities r/ ~ r/1 and temperatures T >  To. The 
limiting case of rl<r h has been considered in Ref. 4. At temperatures 
T <  To the decay probability F may be written as follows: 

F =  2 Im ~ (7) 

where Y is the free energy. 
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At T> T o and tt>>t/1 the following formula is true: 

F=- 2(To/T) Im ~ (8) 

In the considered region these formulas are wrong because they both 
assume that the distribution function is an equilibrium one. However, at 
small viscosity t/~t/2 probability F may be written in the following way: 

where N(E) is the distribution function of quantum particle in energy and 
7(E) is the tunneling probability. Formula (9) gives the same result for the 
lifetime F as formulas (7) and (8) provided that the distribution function 
N(E) in formula (9) takes its equilibrium value. (2) As will be seen below, 
such a change at T > To is possible only in the region of viscosity values 
r/>> ;71. In region tt ~/71 it is necessary to take into account depopulation of 
the distribution function N(E) at energies E close to U caused by the decay 
processes. 

The distribution function N(E) is defined by the transition processes 
between quasiclassical levels caused by the quantum noise. In the second 
part we shall get a common formula for such transitions probability. This 
formula is of particular interest and represents the main methodical 
achievement of the present paper. In the third part, the equation for the 
distribution function N(E) has been solved and the expression for the 
decay probability F of metastable state has been derived. In the fourth 
part, the limiting case of small viscosity has been studied, and in the fifth 
the obtained results are used for the calculation of the lifetime of the 
current state of Josephson junction. 

2. T H E  T R A N S I T I O N  P R O B A B I L I T Y  C A U S E D  BY T H E  
Q U A N T U M  N O I S E S  

It is comparatively simple to describe the motion of a quasiclassical 
particle in the field of noises in the two limiting cases. If the interaction of 
the particle with the field of noises is weak, then the transition probability 
per period is small and may be found with the help of nonstationary per- 
tubation theory. If a noise can be regarded as white noise, then the particle 
behavior may be described with the help of the Fokker-Planck equation. 
Below, for the study of region q ~/11 and T ~ T O we shall get the equation 
for the transition probability which in limiting cases transforms either into 
perturbation theory (t/~t/1) or into the solution of the Fokker-Planck 
equation (T~> To). 
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The transition temperature at q~ql  is equal to 

To =/2/27t (10) 

where/2 is defined by formula (6). 
If the width of the potential well is of the same order as the width of 

the potential barrier, then the characteristic time of the particle motion in 
the well, during which the particle passes almost the whole well, is of the 
order of/2-1.  Usually, the noise frequency is of the order of temperature. 
At T~ To they are of the order of frequency of motion. In this case the 
noise cannot be considered as white noise and the Fokker-Planck equation 
cannot be used. The motion of the particle, interacting with a non-white 
noise has been studied in Refs. 8 and 9. 

In all these works the differential equation, describing the diffusion in 
energetic variable, has been studied. 

In the considered case, the characteristic transition energies are of 
order of temperature To. The distribution function at such changes of 
energy change rapidly and must be described by the integral equation. 

If the energy of the particle is close to the height of the potential 
barrier, then the particle approaches the top of the barrier during a 
logarithmically long time. Near the top of the barrier it moves with a small 
velocity and small dissipation. This leads to independence of dissipative 
processes in different periods of motion. The processes of tunneling and dis- 
sipation do also decouple and it is possible to introduce the average trans- 
ition probability per period of classical motion. In this chapter we derive 
this transition probability. 

Suppose, that the Hamiltonian f i  of one-dimension quantum particle, 
interacting with a thermal bath, may be represented in the following way: 

f i =  fi(~o) + (pQ + fir(Q) 

where fi(~0) is the Hamiltonian of the particle with coordinate ~p, moving 
in potential U(~o), and fir(Q) is the Hamiltonian of the thermal bath. The 
transition amplitude Ar from state i to state f of Hamiltonian /t(~o) for 
time t is equal to 

Ar ~exp(--if~ (o(t)O_.(t)dt i )> (11) 

where ~ is the time ordering operator and ~b(t), Q(t) are operators in the 
interaction representation. For the matrix elements of operator ~b we shall 
use quasiclassical formula 

(.o (fl~b(t)li>=~-~ ~ dzqoi(r)exp[-i(Ei-Ei)(~-t)] (12) 
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where q)i(r) is the value of coordinate q~ at the moment of time ~ on the 
classical trajectory with energy E~, co is the frequency of classical 

movement, and ~r means integration over the period of classical motion. 

Quasiclassical matrix elements decrease quickly with the energy difference 
IE s -  EiI and are smooth functions of energy E~. Let us take Fourier trans- 
forms of matrix element A/y over energy El-Ei: 

A(s) = ~ Ais exp[ i(Ef- E~)s] (13) 
f 

Expanding expression (11) in series of degrees of interaction, we shall 
get 

= ~ exp[i(Ef- Ei)s] t6~r A(s) 
f L 

~ dr dt~ ~o~(T)~(t~)exp[-i(Es-Ei)(~-tl) ] 

~ d'l ~ d~72 (~n(T1)(r dtl f21 dr= O(t,)O('z) 

X e x p [ i i ( E f - E n ) ( Z l - l i ) - i ( E n - E i ) ( r 2 - t 2 ) ] +  " " t  (t4) ) 

By taking into account that energies En in formula (14) are close to Ei, it is 
possible to change all 40, for q)i. After that, the series in formula (14) are 
summed and we shall get the following expression for quantity A(s): 

A(s)= Texp l - i  I~ q~(s + t~) O(t~) dt~], 

(2) 
A~f = ~-~ ~ ds A(s)exp[-is(Er- Ei)] 

(15) 

The probability of transition from state i into state f during the time t, 
averaged over the state of thermal bath, is equal to 

W~I= (IA(rl 2) (16) 

We shall suppose noise to be Gaussian. In this case the average in formula 
(16) is expressed through a pair correlators of operator 0(t): 
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Wif= ~ ~ ds1 ~ ds2exp[-i(s1-s2)(Ef-Ei)] 

x exp - ~ [q)(Sl + tx) ~0(s~ + t2) ~ l l ( t l ,  t2) 

+ r + /1 )  ~P(S2 + /2) ~22(tl, t2) -- (~(S1 -[- 11) ~($2 + t2) ~21(/1, /2) 

- q~(s2 + tm) ~p(s~ + t2) ~12(tl, t2)] dtl dr21 (17) 

where 

~@11(/1, ,iX)---- (~iUO(/1)O(-t2)), 

~@12(ll, t2 )=  ( O ( t l )  0(12)) ,  

~22(11, t2)= (Z-1 0(t2) O(t2)) 
(18) 

Correlation functions ~ depend only on the time difference and we 
shall suppose that they vanish rapidly out of a narrow region 
I t l - t z l ~ T  1. 

Later on we shall need the transition probability for a time period 
equal to the period of motion. Integrals in time in the exponent in formula 
(18) are carried on the period of classical motion. This circumstance leads 
to some simplifications. A rapid decrease of ~ functions enables us to 
spread the integration on the time difference t ~ -  t 2 in the exponent of for- 
mula (18) to infinite limits. In this approach the exponent of formula (18) 
is only the function of difference s = s 2 -  Sl. Take into account the property 
of correlation functions: 

-@tl(t, 11)+ ~22(t, /1) -- ~12(t, t l ) -  ~@2,(t, t l ) = 0  (19) 

Then transition probability per period of motion, given by formula (17), 
can be written in the form 

where 

go 
Wif=-~n ~ ds W(s) exp[is(Ef-Ei)] 

W(s) = exp[~W(s) - ~W(O)] 

(20) 

(21) 

(22) ~K(s) = ~ ~K//r exp[ - is(Er - Ei)] 
f 

Quantity #~r is the transition probability per period from state i into 
state f,  calculated in the perturbation 

~,s =2re I ( f l  ~o I i ) l  2 ~ ( E  s -  Ei) 
o) 
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where matrix elements are defined by formula (12): 

~(E) -- 1(~21(E ) + ~12(-E)) 

If a thermal bath is in a thermal equilibrium and the interaction of the 
particle with it leads to the appearance of viscosity with viscosity coefficient 
r/, then we have (I~ 

In the potential U(q)) having the form of a cubic parabola, 

( 2~o ) (24) U(~p) = 3U(~o/qOo) 2 1 - 5  

function ~/C(s) is equal to 

18uq~ 2 ~ Ea~(E) exp(- isE)  
~ ( s )  = f2 ~ ~_~ dE sin hZ(nE/(2) 

Note that if the thermal bath is in a thermal equilibrium state, then 
the following condition is fulfilled: 

~(E) = N( - E) exp( - E/T)  

So we get 

~ ( i / r )  = f ( 0 ) ,  W(i /T)  = w ( o ) =  1 

In the limiting case of small viscosity (q ~ ~/1) the exponent in formula 
(21) is small and the transition probability may be found according to the 
pertubution theory. At high temperature T>s in formula (20) small values 
s~  T 1 are essential. So expression (22) can be written in the following 
form: 

(25) f ( s )  = ~ ( o )  + 6(is - s2T) 

where 6 is the energy loss by the particle per period, 

= - ~ ~ i f ( E f -  Ei) = rl ~ dt(c~q)/c)t) 2 
f 

Substituting expression (25) into formula (20), we shall get 

= (D (__~_~ ~1/2 (~ ~- El-- Ei) 2] 
W7. 2~ \ f i T /  exp I - -  4--5T J 

(26) 
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The same expression for W,y may be obtained from the Fokker- 
Planck equation. 

At temperature T~(2 essential values of s in formula (20) are not 
small and the transition probabilities Wej- do not follow the Gaussian dis- 
tribution. 

3. THE DECAY PROBABIL ITY OF THE METASTABLE STATE 

In the considered case of small viscosity r/~ r/2 the decay probability of 
the metastable state is given by formula (9), in which the penetration factor 
may be found from the quantum mechanical formula, neglecting the dis- 
sipation process. For energies, close to the potential barrier height U, the 
barrier is parabolic and the penetration factor 7 is equal to 

7(E) = [1 + e x p ( -  2roE/f2)]-' (27) 

Hereafter, energy E is counted from the top of the potential barrier. In 
formula (9), N(E) is the distribution function of the particles that are near 
the barrier and move toward the barrier. It is connected with the dis- 
tribution function of particles N ~-)(E) reflected from the barrier, by the 
following equations: 

N(-)(E) = [ 1 -  7(E)] N(E) (28) 

N(ET) = ~ W~r N ~- ~(Ei) 
i 

As was noted above, for energies E close to the top of the barrier, the 
period of a classical motion is logarithmically large, which means that the 
distance between levels is small and the sum over states in formula (28) 
may be substituted for the integral. 

Using the formulas (20) and (27), the equation for the distribution 
function N (-)(E) takes the form 

[1 + exp(2nE/f2)] N ()(Ef) 

= f _ ~  2~ 0_~ ds W(s) N(-)(E)exp[is(Ef- E)] (29) 

The solution of the equation (29) can be found with the method, given 
in Ref. 6. In this work the Gaussian distribution of probability W, 
corresponding to a white noise, i.e., to high temperatures, has been con- 
sidered. 
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Let us consider the Laplace transform of the distribution function 
N(- )( E), 

n(p) = d E N  ( ) (E)  e x p ( - p E ) ,  
I O O  

(30) 

N ( )(E)=~m.J~_ioo dpn(p)exp(pE) 

At large negative values of the energy function N(-)(E) tends to its 
equilibrium value ~ e x p ( - E / T ) .  This leads to the condition for parameter 

in formula (30) ~ < - l / T ,  From the equation (29) for function n(p) we 
obtain the equation 

n(p -2r t / f 2 )=R(p)  n ( p ) =  -[1 - W(- ip ) ]  n(p) (31) 

The equation of the type (31) with function K(p), analytical in the left 
of right half-plane and tending to 1 at infinity, has the solution that can be 
written as an infinite product. In a general case, it is necessary to represent 
function R(p) as a product of two functions: one analytical in the left plabe 
and the other in the right one: 

/<(p)=  [ 1 -  W ( - i m ) ]  P - f i  �9 K+(P) (32) 
- p + x  K (p) 

where 

~" 1 f~+i~176 dpl 
K - + ( P ) = e x p [ ~ /  ~ i o o p l - p + _ v  W(- ioo)  P l - f l J J  

Kernel K+(p) is analytical in the half-plane Re p < ~ whereas K-(p)  is 
analytical in the half-plane Re p > ~, parameters x, ~ satisfy conditions 

< ~, fl > ~. The factor (p - ~)/(p - ~) is introduced to compensate for the 
phase factor, acquired by function R,(p) along the integration contour. The 
solution of the equation (31) we search for in the form of the product of 
the solutions equations with kernels, equal to separate cofactors in formula 
(32). As a result we obtain 

n(p) = 
C K - ( p )  V(1 + (p - x) ~2/2r~) F( - ( p - fi)~2/2~) 

exp[((fl - x)f2/2r 0 In N] l-[nN o K (p + 2rcn/~2) K+(p -- 2~n/~) 

x exp { - - - ~ l n [ 1 -  W(-- ioo)]} ,  N--+ +oo (34) 

Expression (34) for n(p) does not depend on the choice of parameters 
~, B. We put fi = -1 /T.  At such a value of parameter fi the zero of the ker- 
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nel 1 - W(-ip) at the point p =  - l IT  is eliminated, and the integration 
contour may be shifted into the position ( - 1 / 2 T - i m ;  - 1 / 2 T +  ioo). After 
that, putting z = -l /T,  the expression for n(p) takes the form 

C 
n(p) = 

sin[(p + 1/T)F2/2] 

x exP~4~ t/2r-i~ 

At large negative energies E the behavior of N(E) is governed by the 
pole of the function n(p) at p = -1/T 

2C 
N ( E ) = - - - ~ -  exp ( - E )  (36) 

It is convenient to take constant C such that N(E) would be normalized to 
a unity. Below, we shall suppose viscosity ~/to be not too small, so that the 
thermal equilibration rate rn/~ 1 exceds the metastable state decay rate. If so, 
then the distribution function is given by formula (36) near the bottom of 
the potential well. Considering, that the potential near the bottom of the 
well is a parabolic one, 

U(g0) = - U + mf2o2(Cp - q0o)2/2 (37) 

one finds for coefficient C the following expression: 

C = - f 2  sinh(f2o/2T ) e x p ( -  U/T) (38) 

Formulas (28), (30), (35), and (38) allow one to find the distribution 
function N(E). Substituting it into formula (9) we shall find the probability 
of the decay of the metastable state F. For the probability of tunneling, 
defined by formula (27), F is directly expressed through n(p): 

/ . _  n ( -  27r/(2) (2 sinh(~o/2T) ( U )  
2rt ' F=27r  sin(f2/2T) exp - Y (39) 

iQ ~I/2T+ ioo 
Y = e x p  ~--~ + 1/2r-i~o dpln[1 - W(-ip)] 
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At high temperature T~>O function W(s) is given by formulas (21), 
(25) and Eq. (39) coincides with the result of Refs. 6 and 5. At T -  T0~ To, 
in the leading approximation, Y = I  and the expression (39) and 
asymptotics of formula (4) at T-To>> To(To~U) m do coincide. In order to 
obtain formula (4), it is necessary to take into account the deviation of the 
potential from the parabolic one. At viscosity q~>ql the function W(s) on 
the integration contour is exponentially small, because ~/U(s) is large. In the 
zeroth approximation Y= 1 and formula (39) will coincide with that of 
Ref. 2. In this case the corrections are exponentially small and can be found 
by the saddle point method 

Y= -~-~ - (O2~K/Os2)i/2r j cot ~ exp[-~K(O)+ ~(i/ZT)] (40) 

While deriving formula (40) we have explicitly made use of the 
extremum of function ~ ( s )  for the equilibrium thermal bath being at 
s = i/2T. 

4. THE CASE OF SMALL VISCOSITY (rl<~ql) 

A t  a small viscosity 6 T / ~  1 the quantity W(s) is close to a unity, 
and the difference 1 -  W(s) is proportional to viscosity ft. Therefore, the 
dependence on viscosity q in formula (39) for Y can be explicitly separated: 

Y= (6/T) ~- r~ f (  To/T ) (41) 

where 6 is the energy loss per period, given by formula (26), and function 
f(To/T) is equal to 

= dp In {~ [Y,U(O) - f ( - ~ )  exp{~-~f ~;];_+ff YC#(-ip)]} 

x [cot(P-~-~)-cot(.(P+l/T)~2)]} (42, 

At T~> To in formula (42) small values of p are essential and for ~W(-ip) 
formula (25) can be used. As a result f ( 0 ) =  1. 

Thus, in the classical limit of high temperatures the expression for F 
[-formulas (39) and (42)] coincides with Kramer's result. It should be 
noted, that a classical limit holds only in the region T~>Toln(T/(5). At 
T--. To function f(1 )=  1. The values of function f (x)  for the cubic poten- 
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tial (24) in the intermediate region are given in Table I. For a small value 
of parameter To/T function Y is equal to 

Y= -~ exp - - - ~ l n  ~ o  8rc2To ~oo ~1 

 (• aL 

where ~(1/2)= -1.46035 is the Riemann zeta function. 
In contrast to a classical Kramer formula a small parameter in for- 

mula (41) enters with exponents, smaller than 1. This is due to the 
depopulation of the distribution function at energies close to the potential 
barrier height, caused by a small dissipation. Then main contribution 
comes from the states with energy Ec, at which the tunneling probability is 
equal to the probability of transition, induced by friction (H~ 

7(Ec) = YC(O) ~ gT/Q 2 (43) 

The depopulation of the distribution function N(E)  at E >  E c is evident 
from simple physical considerations and explicitly follows from formulas 
(30) and (35). 

We have supposed in the above that the energy levels lying near the 
top of the potential barrier, where the potential has a parabolic form, are 

Table I. The Functions f(To/T ) and Y(6/T, To/T ) 

0.25 0.5 1 2 4 6 

To/T f (To/T)  Y Y Y Y Y Y 

0 1 0.1658 0.2802 0.443 0.6409 0.8299 0.9126 
0.05 0.7684 0.1666 0.2808 0.4434 0.641 0.8298 0.9125 
0.1 0.6734 0.1689 0.2828 0.4447 0.6414 0.8296 0.9122 
0.15 0.6179 0.173 0.2863 0.447 0.6422 0.8293 0.9117 
0.2 0.5835 0.1793 0.2917 0.4506 0.6437 0.8291 0.9111 
0.3 0.5511 0.1996 0.3102 0.4636 0.6496 0.8296 0.9101 
0.4 0.5494 0.2318 0.3407 0.4869 0.6619 0.8325 0.9101 
0.5 0.5698 0.2787 0.3857 0.5231 0.6835 0.8399 0.9123 
0.6 0.6097 0.3449 0.4482 0.5743 0.7164 0.8536 0.9181 
0.7 0.6694 0.4372 0.5329 0.6432 0.7624 0.8753 0.9287 
0.8 0.7514 0.566 0.6462 0.7335 0.8234 0.9062 0.9453 
0.9 0.8596 0.7463 0.7976 0.8502 0.9017 0.9474 0.9688 

1 1 1 1 1 1 1 1 
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the most significant ones. At a small viscosity the significant energy values 
E are rather close to Ec, and the potential cannot be considered parabolic. 
For such energies 

Y(E)=7(Ec)expI~(E-E~) ] (44) 

where f2c is the frequency of the classical motion at E = Ec in the overtur- 
ned potential. For such a small viscosity it is necessary to make sub- 
stitution f2 ~ ~2~ in formulas (39) and (41). (4) The temperature transition 
from classical to quantum decay regime decreases with the decreasing 
viscosity and is given by 

Oc ~  , 
To = ~ = 2---~ 27c 

The last equality in formula (45) holds only at a small deviation of fre- 
quency ,(2 C from g2. At temperature T close to T o the dependence on energy 
of the two factors in formula (9) is mutually compensate. For this reason a 
wide region of energies is essential and in formula (44) it is necessary to 
keep in the exponent the next-to-leading term of the expansion in E-Ec. 
This would result in formula (4). 

5. THE DECAY OF THE CURRENT STATE IN 
T U N N E L  J U N C T I O N  

The behavior of the superconducting tunnel junction with large 
capacitance is similar to that of the quantum particle with mass m = C/e 2 
(C is the junction capacitance) moving in the potential 

u(~) J 
= - -  (p - cos(2qo) (46) 

e 

where J is the current into the junction and 2q0 the phase difference 
between two superconductors; Jc is the critical current of the contact. It 
follows from formula (45) that the oscilation frequencies f2, g?o near over- 
turned potential and near the potential bottom are equal and are derived 
by thez following equation: 

[ (L 2 IJ 2 
~'~2=~'~2=___.~ l _ _ \ j c j  J (47) 
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The dissipative processes enter through the interaction of the collective 
variable (p with normal excitations. The transition probability ~ f  between 
the levels of potential (45) is equal to (4) 

x [pL(e) p R(s - E) [ (f/exp(iq0) 1i)12 - ~ [  (~) ~-~ (~ - E) 

x ( ( f l  exp(ie)I i)  2 + ( f [  exp(-iq0)1i)2)/21 (48) 

where E = E l - E i ,  indices L, R mean the left, accordingly the right super- 
conductors. Functions p and ~ -  for the superconductors without 
paramagnetic impurities are equal to 

p(~)_ 1~10(1~1-4) g (s)=Ap(s)/e (49) (~2_ A2),/2, 

If the contact is not shunted by the normal resistance then the dissipative 
processes are exponentially small ~exp(--A/T) and the case of a small 
viscosity can be easily realized. The formulas, derived above, are also 
applicable to the tunnel junction, if in formula (22) for ~4/~f the expression 
(48) is used. In particular, the transition temperature T o between the quan- 
tum and classical regimes is defined by formula (45) and fiequency f2 is 
given by formula (47). At T> To the energy loss ~ per period for the iden- 
tical superconductors are equal to 

f 1 (.0, 
where contact resistance R is equal to 

R l = R & l + - - ~ - - e x p  - - ~  n ~ (51) 

In formula (51) Rsh is the shunt resistance. At T ~  To the frequency depen- 
dence of the contact resistance to the normal current becomes essential. If 
the contact is shunted by the normal metal, then that dispersion is small 
and the correlation function of noises has a form of (23). For current J ,  
close to a critical one, the potential energy has a form of cubic parabola. 
The dependence of lifetime of metastable state f f - I  on temperature and 
viscosity is defined by formulas (41) and (42) and is given in Table I. The 
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transition to the case of small viscosity q < r/1 is realized at the contact 
resistance, exceeding the quantum limit 

Re 2 > 1 - (j/ j~)2 (52) 

APPENDIX  A 

The results, obtained in this paper, allow us to find the lifetime of 
metastable state in the intermediate region of viscosity values ~/ ~ ~/1 and 
temperatures T~ To. In this region, as at T< To, the preexponential factor 
in the expression for F depends on the specific form of the potential. The 
numeral results are given for the potential, having the form of cubic 
parabola. Such a potential does definitely occur near the lability point of 
the disappearance of the metastable state. For the potentials of different 
form the problem is reduced to the integrals from function q~(v) on a 
classical trajectory with the "particle" energy, equal to the height of the 
potential barrier. 

Formula (39), complemented by the results of Refs. 1, 2, 3, and 6, 
gives a full description of decay probability F in the whole region of the 
variations of viscosity t/and temperature T ~ To: 

(B)  1/2 (~o )  F ( 2 -  Z,) F ( 2 -  Z2) 
F= 2rc2mT 2 YT o F ( l _ n l )  F ( l _ n z  ) 

x [1 -~b(x) ]exp(x  2 - U )  

~ 1'2 = 2~r  [ -- F/ -~- (4-~2 '{- ~(22) 1/2 ] 2 m - -  

l [ /~ {_( /~2 \1/2~ 
-2m- 1 

x = 2~r2m r~(1 - xi)(1 - z~)/~ ~/~ 

[ u ' " ( ~ ~  (1 ~a2 j~= T [ u'v~cP~ -~ 2 m ( 2 2  2[(4~rT)2-f22+4=T~l/m])J 

Zl = T o / T  

Function Y(q, T), found above, takes into account the depopulation of 
the distribution function. In the classical region T>> T o it coincides with the 
result of Refs. 5 and 6 and differs from the interpolation results31='~3) 

Thus the previously unstudied regions in the plane (r/, T) are 
exhausted (see Fig. 1). 
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It has been supposed in this paper that the correlation function has 
dispersion on frequancy 05 ~ T, and the potential, characterized by the two 
parameters: the height of the potential barrier U and the oscillation fre- 
quency, i.e., the barrier width and the potential well are of the same order. 
Both suppositions are fulfilled for tunnel contacts. In the study of other 
systems one should take into account that the received results are valid in a 
wider region, when the characteristic noises frequency satisfy to (5 > ~oT(Ec. ). 
Here co is a logarithmically small frequency of a classical motion. Trans- 
parency y(Ec) is small in case of a small viscosity [formula (43)]. 

If the condition on frequency 05, given above, is not fulfilled, then the 
transition to adiabatic limit occurs. The boundaries of the regions, 
described in Fig. 1, may be shifted, if the potential well radius and the 
barrier width do differ markedly. 

APPENDIX B 

Let us consider once again those assumptions which are the basis of 
this paper and let us note the connection of the results obtained in it with 
the results of other authors. The dissipation influence on the probability of 
quantum tunneling was first considered in the paper by Calderia and 
Leggett. (14) Case T = 0  was considered in these papers. Low-temperature 
corrections to the decay probability were found in Ref. 15. In our paper we 
were interested in the temperature region T ~  To, where the crossover from 
quantum to classical decay regime occurs. At sufficiently large viscosity 
t/ ~ t/2 the decay probability was found in Refs. 3, 4, and 6. Some of these 
results were obtained later in Ref. 16. In the introduction these results are 
given to exhaust the description. In the present paper we studied the region 
of a small viscosity q--~t/1. In this region viscosity affects weakly the quan- 
tum tunneling. However, in the temperature region T ~ T o viscosity has an 
effect upon the decay probability, because it defines the distribution 
function. The distribution function differs from the equilibrium one and for- 
mulas (7) and (8) are not available. In this region the viscosity processes 
are characterized by parameter 6, equal to the energy losses of a particle 
per period, while moving with energy, close to the height of the potential 
barrier (26). While moving in potential U(~0), having the form of a cubic 
parabola (24), parameter 6 is equal to 

6 6"61/2 ( U )  1/2 
- 5 t/q)~ ( 5 3 )  

Evaluating parameter t/l we supposed that the width of the potential 
well is of the same order as the barrier width. If the width of the classical 
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available region is large, then the value of parameter q l is diminished. In 
this case region ~ 1 ~ 2  widens, where the distribution function is 
equilibrium and the results of Ref. 2 are available. The study of region 
tt ~ t/1 is of great interest to us, because even in the classical region of high 
temperatures T~> T o the results of different authors do not coincide. It was 
supposed in Ref. 12 that particles leave the well uniformly in time. It seems 
to us that this assumption is not valid and the results of Ref. 12 may be 
considered only as interpolating ones. We used the method of Ref. 6, 
evidently taking into account the circumstance that a particle leaves the 
well only approaching the barrier. The account of all that results in the 
system of Eqs. (28). At T~> To our results in the notations of Ref. 12 have 
the form 

rt ,-  ~2----~" Y= 1-2[1-(F/Vo)Z]l/4 Y 

6 36Eb G 
T 5T [1-(F/Vo)2] 1/4 

where values Y(6/T) are given in the upper line of Table I. This expression 
coincides very well with the results of the numerical calculations, given in 
Ref. 12 for F/Vo = 0.985, Eb/T= 3.938 .... 

At small values of parameter (~/T the first two terms of expansion of 
function Y(b/T) coincide with the interpolating formula of Ref. 12 at 
~=-~(1/2)/nl/2=0.824. At large values of parameter 6/T asymptotic 
expansion (40) differs markedly from the results of Ref. 12. The numerical 
calculations are given in the assumption that the viscosity coefficient does 
not exhibit frequency dispersion. This assumption holds true for the tunnel 
junctions, shunted by normal resistance. We have supposed above that 
noises are distributed according to the Gaussian law. This assumption is 
fulfilled for the tunnel junctions, for the heat bath of harmonic oscillators 
and in the cases when the interaction with a heat bath is reduced to fre- 
quent but weak shocks. 
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